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Let {Vk } be a nested sequence of closed subspaces that constitute a multiresolu­
tion analysis of L 2(1R). We characterize the family <1>= {¢} where each ¢ generates
this multiresolution analysis such that the two-scale relation of ¢ is governed by a
finite sequence. In particular, we identify the 'P E <I> that has minimum support. We
also characterize the collection 'P of functions f/ such that each 11 generates the
orthogonal complementary subspaces Wk of Vk , k e If.. In particular, the minimally
supported r/JE 'P is determined. Hence, the "B-spline" and "B-wavelet" pair ('P, r/J)
provides the most economical and computational efficient "spline" representations
and "wavelet" decompositions of L 2 functions from the "spline" spaces Vk and
"wavelet" spaces Wko k e If.. A very general duality principle, which yields the dual
bases of both {'P(' - j): j Elf.} and {f/(' - j): j Elf.} for any f/ E 'P by essentially
interchanging the pair of two-scale sequences with the pair of decomposition
sequences, is also established. For many filtering applications, it is very important
to select a multiresolution for which both 'P and r/J have linear phases. Hence, "non­
symmetric" 'P and r/J, such as the compactly supported orthogonal ones introduced
by Daubechies, are sometimes undesirable for these applications. Conditions on
linear-phase ¢ and r/J are established in this paper. In particular, even-order
polynomial B-splines and B-wavelets ¢m and r/J m have linear phases, but the
odd-order B-wavelet only has generalized linear phases. (CJ 1992 Academic Press, Inc.

1. INTRODUCTION AND NOTATIONS

In this paper, we consider an arbitrary nested sequence

... c V_I C Va C VI C .. , (1.1 )
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of closed subspaces that constitute a multiresolution analysis of L 2= L 2( IR)
(d. [14, 16J)and study the family f/J of L 2-functions t/J such that each t/J E f/J
generates this multiresolution analysis in the sense that

(1.2)

for all k E Z, where

and that t/J has a finite two-scale relation, namely

(1.3)

N.

t/J(x)= L p~t/J(2x-n),
n=O

XE IR, (1.4 )

for some finite sequence {p~}. Here and throughout, without loss of
generality, we assume that

(1.5 )

so that, as is well known (cf. [9J), t/> necessarily has compact support, and
in fact, we have

supp t/J = [0, N.. ]. (1.6 )

The two typical and most important examples of such a t/> are:

(i) t/> = Nm' where Nm is the m th order polynomial B-spline, with
knot sequence Z, defined inductively by

Nm(X)=(Nm_1*NIl(X)=fNm_l(X-t)dt (1.7)
o

with N l = X[O.l'; and

(ii) t/> = .N¢> as constructed by Daubechies [9J, where {N¢>( . - n): n E Z}
is an orthonormal family, and the two-scale relation of ,N¢> yields her
compactly supported orthonormal wavelet Nt/! by an appropriate shift and
an alternation of signs (cf. [9J for the details).

We remark that both N m and Nt/> in the above examples have minimum
supports among all of f/J in their corresponding multiresolution analyses. In
this paper, we will, however, consider the most general multiresolution
analysis (1.1) and any t/J E f/J that generates this multiresolution analysis.
For convenience, although ¢J is in general not a piecewise polynomial
function, we will still call t/J a (generalized) spline and the spaces Vk' k E 7L,
spline spaces. In particular, if qJ E f/J is the ¢J with minimum support, we
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will call qJ a (generalized) B-spline. Our first goal is to establish the basic
properties of any ¢J E CP. This will be done in Section 2. The family cP will
be characterized in Section 3, where the (generalized) B-spline qJ E cP is
identified and an algorithm to determine qJ from any ¢J E cP is also included.

For each k E 71, let W k be the orthogonal complement of Vk in Vk + 1 ;

that is, Wk 1- Vk and Vk + I = Vk + Wk> and we will denote this orthogonal
sum by

A simple consequence of (1.1) and (1.8) is that

(1.8)

i#k, (1.9)

and by the properties

and (1.10 )

of a multiresolution analysis (cf. [14]), we also have

( 1.11)

The orthogonal subspaces Wk> k E 71, are called wavelet spaces, and the
orthogonal decomposition (1.11) may be called a complete wavelet
decomposition. It will be clear that while the spaces Vk , k E 71, are generated
by a single ¢J E cP in the sense of (1.2) and (1.3), the wavelet space Wk>
k E 71, are also generated by a single L2-function 1'/ in the same manner,
namely

(1.12)

where

(1.13)

If I'/(x) has at least exponential decay as Ixl --+ 00, then 1'/ will be called a
wavelet, and the collection of all wavelets will be denoted by 'P. (In applica­
tions to time-frequency localization, for example, it is required that both
I'/EL 1 nL 2 and xl'/(x)EL 2

.) We remark, however, that Meyer [17] also
considered wavelets with slower decay.

In Section 4, we will discuss the structure of wavelets based on the
(generalized) B-spline qJ E CP. In particular, if qJ is the polynomial B-spline
N m' we recover the interpolatory spline wavelet in [5] and the compactly
supported spline wavelet in [6]. In general, we characterize the minimally
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supported wavelet tfJ in 'P and call it the B-wavelet for this multiresolution
analysis and wavelet decomposition. One of the main contributions in
Section 4 is the set of formulas for computing the sequences for the two­
scale relations and the decomposition relations.

The two sequences that dictate the two-scale relations of (jJ E c/J and any
wavelet '1 E 'P yield a reconstruction (pyramid) algorithm, and the two
sequences that define the corresponding decomposition relation give rise to
a decomposition (pyramid) algorithm. These are generalizations of the
orthonormal setting considered in Mallat [14, 15 J and the polynomial
spline case in [5]. It will be seen in Section 5 that in order to acquire both
finite reconstruction and finite decomposition algorithms it is necessary
that both {<p(' - n): n E Z} and {'1(. - n): n E Z} are orthonormal families.
However, such families, which were constructed in the celebrated paper of
Daubechies (cf. [9 J), are not symmetric or antisymmetric. Hence, in order
to have the desirable linear-phase property, Daubechies' wavelets are not
quite desirable. Conditions on the multiresolution that guarantee the
properties of generalized linear phase and linear phase for ¢J and '1 will be
established in Section 5. It is noted, in particular, that all even-order poly­
nomial B-splines and B-wavelets have linear phases but the odd-order
polynomial B-wavelets only have generalized linear phases.

In general, if we choose <p E c/J and any compactly supported wavelet
'1 E 'P, then regardless of orthogonality, we always have a finite recon­
struction algorithm. In Section 6, we determine the dual bases of
{ (jJ( . - n): n E Z} and {'1(. - n): n E Z} and show that by interchanging the
pair (<p, ij) of their duals, we attain a finite decomposition algorithm. That
is, the duality principle of [6J for polynomial splines also holds for this
general setting. The dual bases we introduce here are different from the
bi-orthogonal bases considered recently by Cohen [8J and Daubechies
[ 11]. A brief discussion will also be included in this section.

Under Final Remarks, we consolidate the perhaps well-known properties
(at least for the orthonormal setting) of approximation order, order of
zeros at 2nZ of the Fourier transform of the (generalized) B-spline <p, the
commutator order of <p, vanishing moments of the B-wavelet tfJ, and order
of the zero at z = -1 of the symbol for the two-scale sequence of <po

To facilitate our presentation in this paper, we will adopt the following
notations and terminologies:

(1 0) n denotes the collection of all algebraic polynomials with
complex coefficients.

(2°) For any ¢J satisfying (1.4) and (1.5), let P.p denote the
polynomial

1 N~

P.p(z)=2 L p~zn.
n=O
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(1.14)

(3 0
) PUP) denotes the collection of all polynomials P~ defined in (2°)

where ¢J E ifJ.

(4°) For each ¢JEifJ, define

')'~(x) := rx

¢J(x + y) ¢J(y) dy.
.. -,x

(5°) For ¢JEifJ and y~ as defined in (4°), let

B~(z) = L )'~(n) zn.
flEl!.-

Here, we must pause to remark that from the definition in (4 0
) and in

view of the property (1.6), it is clear that y~ satisfies

y~( -x) = )'~(x)

supp )'~ ~ [ - N~, N~J

so that B~(z) defined in (50) is a finite Laurent series. We now continue
with the above list of notations and terminologies, making simple conclu­
sions in parentheses.

(6 0
) For ¢J E ifJ, let k~ be the non-negative integer such that

y~(k~)#O but y~(n)=O for all n>k~. (Hence, from (1.14), we have
)'~( -k~) # 0 and }'~(n) = 0 for all n < -k~.)

(70) Let II~(z)=zk·B~(z). (Hence, II~ is a polynomial with degree
exact!y equal to 2k~ .)

(8 0) For any P En, let P denote its reciprocal polynomial. (Hence,
we have tI~(z) = Z2k. II~(1/z).)

(9°) Zo is called a symmetric root, or (Z2 - z~) a symmetric factor, of
PEn, if =0 # 0 and P(zo) = P( - zo).

(10 0
) Let (, ZE L 2. We say that ~ and Zare duals to each other if

IX Z(x-m)((x-n)dx=b m . n .
-(YO

(11 0) An L 2-function ( is said to be o.n., if the collection offunctions

g( .- n): n E Z}

constitutes an orthonormal family in L 2 in the sense that

rX

((x) ((x-n)dx=J ll,o.
- x:

(Hence, if ( is o.n., ( is self-dual, in the sense that Z= (.)
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(12°) The following normalization of the Fourier transform will be
used:

~(W)=r~ ~(x)e-i,wdx .
.. - z

(13°) Letr={.::.:=Oorl.:!=I}andrc =C\r.

(14°) If 1.:1 = 1, we will always set

:=e- WJ2
,

where w is real.

2. GENERATORS OF A MULTIRESOLUTION ANALYSIS

(1.15 )

Let rP be a nontrivial function in L 1(\ L 2 and rPk./ be as difined in (1.3).
For each k E Z, let Vk denote, as in (1.2), the e-closure of the linear span
of the collection of rPk.}, j E Z. Following Meyer [16] and Mallat [14, 15],
we say that rP generates a multiresolution analysis of L 2 if both (1.1) and
( 1.10) hold and if {rPo.;}, j E Z, is an unconditional basis of Vo.

In what follows, let us restrict our attention on a given fixed multiresolu­
tion analysis of nested subspaces (1.1) and consider the collection (/J of all
rP such that each rP E (/J generates this multiresolution analysis and that rP
satisfies a two-scale relation governed by a finite sequence. Such a rP can
certainly be normalized to satisfy

~(O) = 1 and

N,

rP(x)= L p~rP(2x-n),
11=0

(2.1 )

For convenience, we will always assume that each rP E (/J satisfies (2.1)
for some positive integer N ¢> and generates the same multiresolution
analysis (1.1). Hence, as is well known (cr. [9]), each rP E (/J satisfies (1.6 j,

so that to look for the qJ E (/J with minimum support, it is equivalent to
determining qJ E (/J with

N <p = min {N ¢> : rP E (/J }. (2.2)

Let us pause for a moment to remark that, at least for the orthonormal
setting, sufficient conditions that guarantee the non-emptiness of (/J have
been derived by Cohen [7], Daubechies [9, 11], Daubechies and Lagarias
[12], and Meyer [16]. For completeness, we will include a brief discussion
of this topic under Final Remarks.
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Making use of the notations and terminologies introduced in Section 1,
we collect a list of basic properties of any generator ¢J E cP of the given
multiresolution analysis as follows.

THEOREM 2.1. Every ¢J E cP satisfies the following properties.

(i) Forall::=e- iw2 ,wEIR,

(2.3 )
flEL

In particular, ¢J is o.n. in the sense of (11 0
) if and only if B, (z) = 1 for all

1=1 = 1.
(ii ) III/! (z) # 0 on 1z1= 1.

(iii) ll, = II,.

(iv) For all Izi = 1,

IP,(zW B,(=) + IP,( -zW B,( -z) =B,(=2). (2.4)

In particular, if ¢J is O.n. in the sense of (11 0
), then

for all Izi = 1.

(v) For all ZEC,

P,(z) P,(=) IIq,(z) + (-1 )N.-k. P,( -z) p,( -z) III/! ( -z)

==N. - k.II</>(=1).

(2.5 )

(2.6)

(vi) P, has no symmetric roots on Izi = 1.

Remark 2.1. For o.n. ¢J, the condition (2.5) for 1=1 = 1 is important in
the study of orthonormal wavelets in [14,9,7].

Remark 2.2. The identity (2.6) is instrumental to yielding the wavelet
decomposition sequences. For the polynomial spline setting as considered
in [5,6], it reduces to the key identity for the Euler-Frobenius polynomial

II2m - 1 (z) := (2m -I)! IIN.,!=)
m-I

=(2m-l)! L N 2m (m+})Zm+ j
-l (2.7)

f= -m+ L

of degree 2m - 2 (cr. [19]) as established in [5, Lemma 2]. Recall that the
2m - 2 roots r l' ... , r 1m -1 of II1m _ 1 are simple, real, negative, and satisfy

64071 3-3
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(2.9)

Hence, it is clear that JI2m _ I satisfies (ii) and (iii) in Theorem 2.t.

Proof (i) Let z=e- iw,'2 be fixed and consider g(x) :=}'¢(x)e- iXW

(cf. (4°) for the definition of y¢). Then

g(s) =f:
oc

{J:oc r/J(x + y) r/J(y) dY} e- ixw e- IXS dx

= roc foc r/J(x + y) e-i1x+Y)(w+s) r/J(y) e .y(w+sl dx dy
- IX. -.'XI

-;;----

= ~(w +s) ~(w +s) = I~(w +sW.

Hence, by the Poisson Summation formula, we have

L 1~(w+2nnW= L g(2nn)
nE 7L

= L g(n) = L y¢(n) e- inw

llE 1L tle 7L

= L }'¢(n) Z2n = B¢(Z2)
flEE

(cf. (5°)). In particular, for o.n. r/J, we have y¢(n)=bn.o so that B¢= t.

(ii) Since {r/JO.n: n E Z} is an unconditional basis, there exist constants
A and B, with 0 < A ~ B < 00, such that

for all 12 sequences C= {Cn}' Set

C(w):= L Cne- inw.
nEE

Then by the 2n-periodicity of C(w), we have

1 f21t .
=2 lC(wW L 1r/J(w+2nnWdw.

n 0 nEE

(2.10 )
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Hence, it follows from (2.10) and the identity

that

A~ L 1~(w+2nnW~B
nEZ

for all WE lit In particular, by (i) we have

on Izi = 1 (cf. (70)).

(iii) Since y... ( -n)=y... (n) by (1.14), we have, for Izi = 1,

k;

ll... (z) :=Z2k; L y... (n)z-n-k;
n= -k;

k;

=Zkk L y... ( - n) z - n

n= -k.

k.

=zk'I y... (n)zn=I7... (z).
n= -k.

271

(2.11 )

But since both ll... and I7... are polynomials, they must be identical.

(iv) From the definition of p ... in (2°), taking the Fourier transform
of both sides of the two-scaled formula (2.1) yields

z=e- i(w/2).~(W) = p ... (z)~ (~),

Hence, for z=e- iW
/
2

, (2.3) becomes

B... (Z2) = n~z Ip...((-lrZ)~(~+nn)12

= IP... (zW n~z 1~(~+2nn)12

+IP... (-zW n~J~(~+n+2nn)12

= IP... (z)1 2B... (z) + Ip ... ( -zW B... ( -z)

(2.12 )

which is (2.4). Of course, if ¢J is o.n., then (2.4) becomes (2.5) since B... is
the constant 1.
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(v) By appealing to the formulas

and

which hold for lzl = 1, it is easy to see that (2.4) is equivalent to (2.6) for
all z, Izi = 1. But since both sides of (2.6) are polynomials, the formula
(2.6) holds for all z E C.

(vi) If -'0 # 0 is a symmetric root of P"', then we have
p ",(-'0) = P",( - zo) = 0, so that II",(z~) = 0 by (2.6) in (v). Hence, by (ii), we
conclude that Iz~1 # 1; that is, P", has no symmetric roots on Izl = 1. I

Remark 2.3. In the proof of (ii), we have actually established the
equivalence of (2.10) and (2.11). Hence, if {~( . - n): n E Z} is a basis of Vo,
then this basis is unconditional, provided that (2.11) is satisfied for all w
and some positive constants A and B.

3. MINIMALLY SUPPORTED GENERATORS AND CHARACTERIZATION OF if>

The first goal in this section is to characterize the minimally supported
qJ E if> in terms of the structure of its associated (two-scale) polynomial P <p'
It will be seen that qJ is unique and, for convenience, we call it the
(generalized) B-spline of this given multiresolution analysis. By using qJ, we
can characterize the whole class if>, and from this characterization it will be
clear how qJ can be obtained from any ~ E if>.

Recall from (2.1), (1.6), (2.2), and the definition of the polynomial P", in
(2°), that qJ E if> has minimum support among all ~ E if> if and only if

deg P<p =min{deg P",: ~ E if> }.

We have the following result.

(3.1 )

THEOREM 3.1. qJ E if> has minimum support if and only if P <p has no
symmetric roots.

Proof (i) Suppose that qJ E if> has minimum support and consider the
factorization,

where m<p' n<p E n, m<p has no symmetric roots, and m<p (1) = n<p (1) = 1
(cf. (2.12) with w = 0). We must prove that n<p is the constant 1. Assume,
on the contrary, that this is not true. Then deg n<p ~ 1. Since P <p has no
symmetric roots on lzl = 1 (cf. Theorem l.1(vi)), the polynomial n", cannot
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vanish on 1::1 = 1, so that n;; 1 is analytic in a neighborhood of the unit
circle. Consider the series

1
-(":') = L r"z",
n", - "EE

where {r,,} E /2, and define

Izi = 1, (3.2 )

¢J(x) = L r"cp(x-n).
nEil

Then by using the notation z = e- ioJl1 and applying (2.12), we have

J(w) = (L r" e~i"W) $(w)
"EE

=n",~Z2)P",(Z)$(~)

=m",(Z)$(~)

= m",(z) J(~)C~E r" e-i"W/2) ~ 1

= (m",(z) n",(z)) J(~).

That is, ¢J E t/J with

so that

(3.3 )

This contradicts (3.1).

(ii) Conversely, suppose that P", has no symmetric roots. Let ¢J E t/J
be arbitrarily chosen and write

¢J(x)= L c"cp(x-n),
"EE

where {C,,}E/ 2. Then

J(w) = C(Z2) $(w), z = e- lw:'2, (3.4 )
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flEE

Hence, by the 2n-periodicity of C( Z2), we have

L ~(w + 2nn) = C(Z 2) L qJ(w + 2nn). (3.5)
flEU" flEU"

In view of the Poisson Summation formula, it is clear that (3.5) is
equivalent to

(3.6)
flEU" flEU"

z=e- iw12
• That is, from (1.6), we see that C(z) is a rational function.

In addition, again by the 2n-periodicity of C( Z2), it follows from
Theorem 2.I(i) and (3.4) that

lC(z2W= B", (z2)/Bq> (Z2),

where IB",(z)1 = 1/1", (z)1 and IBq>(z)1 = 1/1'1' (z)1 for Izi = 1 by (70).
Since both of the polynomials /1", and /1'1' do not vanish on Iz1= 1 (cr.
Theorem 2.1(ii)), we may conclude that the rational function C(z) is
pole-free and zero-free on Izi = I.

Next, consider the factorizations

and

N.

L ¢J(n)z"= L ¢J(z)zfl=~",(z)d(z)
fiE£. n=O

N~

L cp(n)zfl= L cp(n)z"=~q>(z)d(z)
nell. n=O

(3.7)

(3.8 )

(cf. (1.6)), where the two polynomials ~'" and ~q> have no common factors
and ~",(O), ~q> (0) # O. Then it follows from the two-scale equations of ¢J and
cp and (3.4), that for z = e - iWf2,

~(w) = P",(z) ~ (~) = C(z) P",(z) qJ (~)

= C(z) P",(z) qJ(w)/Pq>(z)

C(z) _
= C(

Z
2) P</>(z) cp(w)/Pq>(z),



COMPACTLY SUPPORTED WAVELETS

SO that, in view of (3.6)-(3.8), we have
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(3.9)

Now since P</> is a polynomial and the two polynomials ~</>(Z2) and ~cp(Z2)

do not have any common factors, we must have

(3.10)

for some polynomial C. Now, by (3.6)-(3.8), we have ~</>(z) = C(z) ecp(z).
So, since e</> and ecp have no common factors and the rational function C(z)
is pole-free and zero-free on Izi = 1, it follows that ecp is zero-free on Izl = 1
also. From the normalization ~cp (0) # 0, it is therefore clear that if ~cp is not
a constant, and we write

for some p ~ 1 and

where z; is a branch of the square-root of Zj' then the two point-sets
{Zj : j = 1, ..., p} and {z;: j = 1, ... , p} do not coincide. Hence, from
(3.10) there is some Zjo' 1~jo~P, such that (Z2_ ZJo ) is a factor of Pcp,
contradicting that Pcp has no symmetric roots; unless of course, that ~ cp is
a constant. Hence, it follows from (3.9) that

~</>(Z2)
p </> (z) = e </> (z) Pcp (z),

so that deg P </> = deg ~</> + deg P cp ~ deg Pcp' In other words, cp has minimum
support. This completes the proof of Theorem 3.1. I

As a consequence of Theorem 3.1, we have the following uniqueness
result.

COROLLARY 3.1. Let cp E t[J have minimum support. Then

(i) every ¢J E t[J is a finite linear combination of integer translates of cp;
and

(ii) cp is unique.
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Proof (i) From the proof of the above theorem and using (3.6)-(3.8),
since ~cp is a constant, we have C(z) = (1/~cp(O)) ~¢>(Z)E n. Hence, the state­
ment (i) follows from (3.4).

(ii) Let ijJ E et> also have minimum support. By (i), we may write

p

ijJ(x) = L cj cp(x - i),
J~O

for some finite integer p? 0. Here, let us recall that

supp ijJ = [0, Nq;]

supp cp( . - i) = [i, N cp +iJ, i=O, ... , p.

Since ijJ has minimum support, we have N q; = N cp' so that, if p? I, then for
XE [Ncp+ p-l, Ncp+ p],

p

0= ijJ(x) = L c/ cp(x - i) = cpcp(x- pl·
;=0

But that cp(x) is nontrivial on [Ncp-I,Ncp] implies that cp(x-p) is
nontrivial on [Ncp + p - I, N cp + p], and this, in turn, implies that Cp = 0,
a contradiction. That is, ijJ = cocp. Hence, using the normalization
<p(0) = ep(O) = I, we have ijJ = cp. I

As another consequence of Theorem 3.1, we also have the following
result.

COROLLARY 3.2. fr there is a ¢J E et> which is O.n. in the sense of (II' ),
then ¢J has minimum support.

Proof If¢JEet> is o.n., then by (2.6) in Theorem2.1(v), we have

P¢>(z) F¢>(z) + (-I )N"p¢> ( -z) F¢>( -z) = z'V", ZE C.

So, P if> cannot have any symmetric root, and it follows from Theorem 3.1
that ¢J has minimum support. I

From the (unique) minimally supported cp E et>, we will now characterize
all of et>. First, let us recall the notations of rand r c in (13'). For any
PEn, we introduce the two classes of polynomials:

(3.11)
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and

{
r(.:) }R(P)= rE1r:r(.:),fOfor':Er,r(l)=I'-2 P(=)E1r.
r(.: )

Remark 3.1. If P(.:),f°for all .: E r, then

L(P) = R(P) = {1}.

277

(3.12)

EXAMPLE 3.1. Consider the polynomial spline spaces with ¢J = Nm

denoting the m th order polynomial B-spline defined in (1.7). Then it is well
known that

(
I + .:)m

PN".(.:)= -2-

(ef. [4]), so that L(PNJ = R(PNnJ = {l}.

Also recall from (3 0
) that P(fP) denotes the class of all polynomials

P¢ with ¢J E <1>. Hence, characterizing <1> is equivalent to identifying all the
polynomials in P( <1». We have the following result.

THEOREM 3.2. Let <P E <1> have minimum support. Then

In particular, if ¢J E <1>, then there exists an r E R(P¢) such that

(3.13 )

Remark 3.2. Before we establish this result, let us first remark that in
all our discussions in this paper, we allow complex-valued functions. If only
real-valued functions ¢J E <1> are considered, then we simply restrict IE L(PqJ)

and r E R(P¢) to those with only real coefficients for the above theorem to
be valid.

We now turn to the proof of Theorem 3.2.

Proof (i) Let P¢ E P( <1»; that is, ¢J E <1>. Then by Corollary 3.1 (i), we
may write

p

¢J(x) = L cj<p(x-}),
I~O
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Since supP4i= [0, N<b] and supp q>[0, N",], it is also clear that co ;60. Set

p

I(z) = I. c"z",
n=O

where 1(0) = co ;6 O. Also, as in the proof of Theorem 3.1, we note that

for all Izi = 1.

Hence, 1(z) ;6 0 for all z E r. In addition, from the relations

~(w) = l(z2) G9(w)

~(W)=P<b(Z)~(~)

G9(W)=P'P(Z)G9(~)

which hold for all z = e - iw,2, we immediately have

l(l) = 1

1(z)
1(;:2) P<b(Z) = P",(z), Izi = 1.

By analytical continuation, we now conclude that

so that IEL(P",).

(ii) On the other hand, suppose that

for some 1E L(P",). Then for

m

I(z) = L c] z<
J~O

we define
m

4i(x):= L c, q>; (x - j),
j~O
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SO that P,p(z)=p(z). Since l(z)#O for all ZEr, it is clear that ¢JEifJ with
p~ = Pcp(O) = P6 #0 and pt. = P":v~ # 0, where N¢ = m + Ncp.

(iii) If ¢JEifJ, then as in the derivation in (i), it is easy to see that by
setting r(r)=/(z) in the derivation, we have rER(P¢) and (3.13) holds.

This completes the proof of the theorem. I
The following consequence is useful in the study of generators of the

given multiresolution analysis.

COROLLARY 3.3. Let cp E ifJ have minimum support. If all the roots of Pcp
lie on r, then # ifJ = I. In other words, cp is the only generator of the given
multiresolution analysis which is governed by a finite two-scale sequence.

Proof Let IEL(Pcp). Then since l(z)#O on r, by the same argument as
in the proof of the converse in Theorem 3.1, it is clear that I(z) does not
divide l(z2) unless I(z) = 1. So, since I and Pcp have no common roots, the
function

cannot be a polynomial unless I(z) is the constant function, or
equivalently, # ifJ = I. I

EXAMPLE 3.2. For the polynomial spline spaces, since the mth order
B-spline Nm has the property that PNJZ) =0 only at z = -I, it is the only
multiresolution analysis generator that has a finite two-scale sequence.

EXAMPLE 3.3. For any integer m ~ 1, consider

. (1 +Z)mP,p (z):= -2- Mm(z),

where MmEn with M m ( 1) = 1 and

max IMm(z)1 < 2"'-1.
Izl ~ I

(3.14 )

(3.15 )

Then it can be shown that the function ¢J with the finite two-scale sequence
defined by (3.14) generates a multiresolution analysis of L 2 (cf. under Final
Remarks). Hence, there is a lot of freedom to choose M m' so that # ifJ = 00.

For instance, for m = 3, we may set

M 3 (z) = 2(Z2' -~)

for any k=O, 1,2, ....
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Remark 3.3. The result (3.13) in Theorem 3.2 suggests an algorithm to
produce the minimally supported q> E $ from any ,p E $. Indeed, if we set

P",(;:)=m",(:)ro(;:2), (3.16)

where m", and 1'0 En, r o( 1) = 1, and m", has no symmetric roots, then we can
compute q> as follows.

If deg ro= 0, then set q> =,p. Otherwise, consider

P"'.1 (;:) = m",(;:) r o(;:)

and set p",.,(;:)=m""I(z) rl(:2), where m",.', r, En, rl(l)= 1, and m"'.1 has
no symmetric roots; and set P""2(:)=m,,,.tlz)rdz), etc. Since

deg P", > deg P "'. I > deg P "'.2 > ''',

this process must terminate at

P",./(:) = 111"',/(;:)'

say, where rl is the constant 1. Then q> is determined by PIfJ = P"',1'

4. WAVELETS

While the nested sequence of closed subspaces Vk of the given multi­
resolution analysis of L 2 is important for approximation purposes, the
orthogonal complementary wavelet subspaces Wk , k E 7L, defined in (1.8),
are essential for analyzing the behavior of the approximants from Vk . Let
q> E $ be the (generalized) B-spline that generates this multiresolution
analysis. Then since we have Wo C VI' any '1 that generates the wavelet
spaces Wk in the sense of (1.12 )-( 1.13) must satisfy

l/(X) = I q;'q>(2x - n),
nEZ

(4.1 )

For practical purposes such as applications to time-frequency analysis,
however, '1 must be more restrictive. We will require '1 to have at least
exponential decay as follows.

DEFINITION 4.1. An L 2-function '1 is called a wavelet for the given multi­
resolution analysis provided that

(i) {1/(·-n):nE7L} is an unconditional basis of Wo, and

(ii) the "symbol" function

Q~(:) := ~ L q'}.z"
flEZ
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of the "two-scale sequence" {q~} in (4.1) is analytic in a neighborhood of
1::1 = 1.

The collection of all wavelets '1 will be denoted by 'P.

Remark 4.1. The analyticity condition of Q~ on Izi = 1 is equivalent to
the condition that both sequences {q~} and {q~tl} have exponential decay
as n --+ + CN. Hence, since qJ E if> has compact support, 1/ E 'P must have
exponential decay.

Remark 4.2. For each 1/ E 'P, by defining 1/k,j = 1/(2k . - j), it is clear
that for each k E Z, {1/k./ j E Z} is also an unconditional basis of Wk'
Hence, every '1 E 'P generates all the wavelet spaes Wb k E Z.

One of the objectives of this section is to give a characterization of all
wavelets 11 E 'P. The polynomial

{3q> (z) := ;;v" -k" - Illq> (z) Pq> (::) (4.2)

will be crucial for this purpose. (Recall the notations of Nq>' kq>' llq>' and
Pq> from (2°) and (6°)--(8°) in Section 1.) Let us factorize {3q> as

{3q>(z) = /1q>(Z) ,1'1'(;;2), (4.3)

where /1'1" Aq> E n such that Aq> (l ) = 1, ::2 does not divide /1'1' (z), and /1'1' has
no symmetric roots.

Remark 4.3. Since llt/> is zero-free on Izi = 1 and Pt/> has no symmetric
roots on 1::1 = 1, Aq> is zero-free on 1::1 = 1.

In stating our characterization theorem, we need the following notation.

DEFINITION 4.2. Let.91 denote the class of all functions f analytic in a
neighborhood of 1::1 = 1 such that f(z) # 0 on 1::1 = 1.

The following observation is trivial.

Re'mark 4.4. f E.9I if and only if Ilf E.9I. Furthermore, fg E d if both
f and g are in d. The main result in this section is the following charac­
terization theorem.

THEOREM 4.1. Let /1'1' be as defined in (4.3). Then 1/ E 'P if and only if

(4.4)

Ivhere 11',/ E d.

In view of the characterization (4.4), it is clear that the rate of decay of
the wavelet '1 E 'P is governed by the function II'~ E crd. In fact, we have the
following.



282 CHUI AND WANG

COROLLARY 4.1. Let /l<p be as defined in (4.3) and W~E7!. Then the
wavelet 1] has compact support.

We note that Auscher [1] considered Q~(z)=ze~p<p(-z)[J<p(-z) and
obtained his ~(w). This means that he chose w~(z2) Z-(N~-k~-l)+<~.

Remark 4.5. The condition I\'~ E n is not only a guarantee that the
corresponding wavelet 1] has compact support, it is also a necessary and
sufficient condition for the sequence {q~} in the two-scale formula (4.1) to
be a finite sequence. Since the pair of two-scale sequences {p~} and {q~}

are used to describe the reconstruction algorithm (a topic to be discussed
in the next section; see also [15,9]), it is very important to restrict w~

to n. For the purpose of normalization, since it may not be possible to
assume qZ of- 0, we will require q'! of- 0 whenever qZ = o.

DEFINITION 4.3.

(4.5 )

Of course for 1] E 'Pp , the polynomial factor w,/ in (4.5) must be zero-free
on Izi = 1. It is clear that the finite sequence {q;:'} is the shortest, or
equivalently, the support of 1] is the smallest (cf. [9]), if and only if w~ is
a constant polynomial. That is, we have the following result.

COROLLARY 4.2. IjJ E 'Pp has minimum support if and only if w",(.:-) = 1,
or equivalently

Q",(z) = /l<p( -z). (4.6)

Furthermore, under the normalization A.<p (1) = 1 in (4.3), the minimally
supported wavelet IjJ is unique.

DEFINITION 4.4. The minimally supported wavelet IjJ E 'Pp is called the
B-wavelet of the given multiresolution analysis.

COROLLARY 4.3. If the minimally supported qJ E c[J is o.n. in the sense of
(11 0

), then the (minimally supported) B-wavelet IjJ E 'Pp is also o.n. in the
sense of (11 0

) and is given by

lty'qJ +£.p

ljJ(x)= L (_l)n P'7J~_n+<.qJ(2x-n),
n =£r.p

(4.7)

where f-<p:= 1 for even N<p and f-<p :=Ofor odd N<p'

Remark 4.6. The o.n. wavelet IjJ in Daubechies [9] is shifted by
(N<p+f-<p-l)/2.
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EXAMPLE 4.1. Consider the polynomial spline setting where cp is the
mth order B-spline N m . Then in the factorization (4.3), we have ANJZ)= 1,
so that J.lN

m
= PN

m
as defined in (4.2). In fact, we have

1 (1 + Z)m
J.lNJZ) = (2m _ I)! -2- Il2m - dz),

where Il2m _I is the Euler-Frobenius polynomial of degree 2m - 2. Hence,
by choosing

in (4.4) we have

(1 - z)m
Q~Jz) = (2m - I)! 112m_ dz)'

which gives the wavelet

"Im(x)=L~;:,l(2x-l) (4.8 )

obtained in [5J, where L 2m is the (2m )th order "fundamental spline" with
knots at 1L, defined by the interpolation condition L 2m(n) = t5 n. O for all
nEll. In addition, by choosing w",Jz) = 1, we have

1 (1- z)m
Q",Jz) = (2m-I)! -2- 112m-d -z)

which yields the compactly supported wavelet

1 2m-2 .
l{Im(x)=2m- 1 L (-I)'N2m(j+l)N~;:,l(2x-j) (4.9)

j~O

obtained in [6]. Note that suppl{lm=[0,2m-lJ, and by Corollary 4.2,
this is the (minimally supported) B-wavelet of the polynomial spline spaces.

We now turn to the proof of Theorem 4.1.

Proof (i) Suppose that w~ is in the class s4 and Q~ is defined as in
(4.4). First, we observe that since f.L'I' E n:, Q~ is analytic in a neighborhood
of Izi = 1.

Secondly, let us verify that '7(. - n) is in Wo for all n. We need to
reformulate (4.1) as

(4.10 )
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Then for alii" 12 E 7L, setting k = 12 -I" we have, again using the notation
=== e -IW 2,

I k := r" qJ(x-/IlI](x-/2 )dx= J' qJ(x)l](x-k)dx
- Y -r

1 . JC

=-I ep(w) I/(W) e,kw dw
2n· - JC

where the last equality is a consequence of Theorem 2.1(i). Now, from
(4.2), (4.3), (4.5), and (70), it is clear that

, f3",( -z) Ir~(z2)
Q~(z)= J.l",( -z) II',/(Z-) = )'Ij>(Z2)

11',/ (Z2) 'I' v

= AIj>(z2) [( -z), ,,- 8 4,( -Z) P Ij>( -z)].

Also, recalling from (5'). (1.14), and the definition of j5 Ij>' we have

8(z)=8(z)

j5 Ij> (z) = zs" P(z)

for 1=1 = 1. Hence, it follows that. for Izi = I,

P Ij>(z) Q;;1Z) BIj>(z) + P
4
,( -z) Q~( -z) BIj>( -z)

[ 11'~(Z2)J
= A",(Z2) B",(z) B",( -z)

x [( -z) -N. +' P Ij>(z) -::j5-Ij>(---z-) + z-'1o + I P Ij>( -z) j5",(z)]

[

It' (Z2)J
= A~(Z2) BIj>(z) 81j>( -z)

x [( _Z)-2No +1PIj>(Z) PIj>( -z)+z -2N,p+lP",( -z) PIj>(z)]

=0.
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That is, h = °for all k E ll, so that

fl1( ·-n): nEll} cWo·

285

Thirdly, to show that this set is a basis of Wo, we will do even more by
determining the decomposition sequence that yields VI = VoEB Woo The
rational function

is instrumental for determining this sequence. Also, for this 11 under
consideration, we set

The reason for this choice of H~ is to establish the pair of identities

P'I'(z) G",(z) + Q~(z) H~(z) = 1

P'I'(z) G",( -z) + Q~(z) H~( -z) = 0,

(4.12 )

(4.13)

(4.14 )

where the idea originates from our previous work in [5,6]. The proof of
(4.13) follows by applying the identity (2.6) in Theorem 2.1 and referring to
(4.2), (4.3), and (4.4) in [6]. Now, by setting

Al (Z2) := G'I'(z) + G",( -z)

B I(Z2):= H~(z)+ H,,( -z),

we have, from (4.13), the identity

(4.15 )

Hence, for z = e - iw/2 and applying the two-scale formulas (1.4) and (4.1)
(see, for instance (4.1 0)), we have

In .addition, let us set

A 2(Z2):= z[G'I'(':) - G'I'( -z)]

B2(.:2) := z[H~(z) - H~( -z)],

640.71 3-4

(4.16 )

(4.17)
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so that from (4.13), we have the identity

Hence, as above, it also follows that. for;;: = e- i
"'",

(4.18 )

The pair of equations (4.16) and (4.18) yields the necessary decomposition
formula, provided that Ad;;:"), A 2(;;:2), B[(;;:2), and B2(;;:2) are all in
L 2( Izi = 1). Indeed, by setting

Adz)=2 L a_ 2n zn

tiE !l

flEI

tiEL

flEE

we see that the pair of (4.16) and (4.18) together is equivalent to

(4.19)

cp(2x-I)= L a'_2ncp(x-n)+ L b'_2nY/(x-n) (4.20)
flEZ nEi[

for aliI E 7L
Now, returning to the consideration of the four functions in (4.19), we

first observe that from Theorem 2.1 (ii), the rational function G", in (4.11)
is pole-free on Izi = 1, so that A [ and A 2 are analytic in a neighborhood of
Izi = 1 (cf. (4.14) and (4.17)). On the other hand, from the assumption that
w~ is in the class d, we may conclude, by applying Theorem 2.1(ii) and
Remark 4.4, that

and hence, since P", and A", are polynomials, we see that H ~, and
consequently B 1 and B 2 , is also analytic in a neighborhood of Izi = 1.

Therefore, the decomposition formula (4.20) is defined by two l"-sequen­
ces {an} and {bn}, which are actually of exponential decay. We will return
to the discussion of wavelet decompositions in the next section. At this
point, we observe that a trivial consequence of the decomposition formula
(4.20) is that
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is a basis of WOo So, to prove that '1 E 'P, it is sufficient to verify that this
basis is unconditional, and in view of Remark 2.3, it is sufficient to establish
(2.11) for ri.

Now, by Theorem 2.1(i), (iv) and the two-scale formula (4.1), we have,
for ::.= e -1<0'2,

fiE E

= n~z IcP (~+ 2nn)1
2

IQ~(::W+n~J(cP (~+ n+2nn)1
2

IQ~( -zW

= B",(z) IQ~(zW+ B",( -z) IQ~( _::)1 2

" Iw (Z2)1
2

= [B",(z) 18",( -::)1" IP"'( -z)l" + B",( -z) IB",(z)[2 [P",{::WJ~
A",{Z )

I
IV (Z2)I

2
= B,p(z) B",{ -z)[IP,p( -zW B",( -z) + /P",(zW B",(z)] A,:(Z2)

, IIV (Z2) 1

2
= B",{::) B",( -z) B",{z·) ;":(Z2)

= III",{Z) II",( -z) ~",(~2)(IV~(Z2))21.
(A", (z-))-

Here, since both the numerator and the denominator of the last quantity
are analytic and zero-free on Izi = I (d. Remark 4.3), this quantity is
continuous and hence, bounded below and above on all 1::1 = 1.

(ii) Conversely, suppose that 11 E 'P. We must establish (4.4) for
some IV ~ E d. Let ljJ be defined by setting w", (=) = 1, or equivalently,
Q",{z) = /l",( -z) in (4.4). Hence, by what we just proved, we have ljJ E 'P.
This yields, in particular,

z = e -iw,'2,

where C(::2) is in L 2( Izi = 1). By the same proof as that of the converse of
Theorem 3.1, we also note that C(=) ¥ 0 on Izi = 1.

On the other hand, since Y/ E 'P, we have

Hence, combining the above formulas, we have
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so that
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Q~(z) = 11'1' ( -Z) C(Z2).

That is, I\'~ (z) = C(Z2). We have already seen that C(z) "# 0 on Izi = 1. Since
C(Z 2) is also in e(lzl = I), the quotient Q"(z)/Il<p ( -z), being analytic on
Izl = I except at the location of the possible zeros of the polynomial
Il<p(-z), cannot have any poles on Izl=1. This shows that 1I"~(Z)=C(Z2)

is in cr:l, and completes the proof of the theorem. I

5. ALGORITHMS AND LINEAR-PHASE FILTERING

Let q> be the (generalized) B-spline that generates a given multiresolution
analysis and choose any wavelet '1 E 'P. Although in most applications, we
prefer the B-wavelet t/J E 'P whose minimum support facilitates both com­
putational and implementational efficiency, we will see that a "symmetric"
wavelet f/ is important in filtering applications, since "symmetry" is
required for the filtering process to have linear phase.

We first return to the formulation of the decomposition algorithm (4.20),
with decomposition sequences {an} and Ibn}. Let G<p and H~ be as defined
in (4.11) and (4.12), respectively. Then from the definitions of A I' A 2'

B 1 , B 2 in (4.14) and (4.17), it is clear that (4.19) is equivalent to

G (-) - " a _-n
(j) .:.. - L- n""

tiEl.

H,,(z) = L bn z- Il
•

t1EZ

(5.1 )

Hence, the expressions of G<p and H~ in terms of [['I" P<p, A<p' and II"~ are
important in yielding the decomposition sequence -[an} and {b n }.

EXAMPLE 5.1. Let q> be the polynomial B-spline N", of order m and t/J '"
be the corresponding B-wavelet given in (4.9). Then

(5.2)

which were derived in [6]. So, if r1, ... , r2m _ 2 denote the roots of the
(2m - 2)nd degree Euler-Frobenius polynomial [[2"'-1 (z), where
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and rlr2m-2=r2rm~3'" =rm_1rm= 1, then the rate of decay of the
decomposition sequences {an} and {bn} is O(lrml-,n,/2) as Inl-+ 00.

Remark 5.1. If qJ happens to be o.n. as in [9] in the sense of (11"),
then by Corollary 4.3, the B-wavelet !/J is also o.n., and we have

1 .\'~

P<p (z) ="2 I p;, ~n
n~O

1 N~ + e~

QIjJ(z) ="2 I (_1)n p"/v,,-n+e/',

(5.3 )

where B<p = 0 for odd N<p and B<p = 1 for even N<p as defined in the statement
of Corollary 4.3. Hence, the pair of two-scale (reconstruction) sequences is
given by

n=O, ...,N<pP"=P;,,

q,,=q~=(-ltP"/v~~,,+e~' n = B<p' ... , N<p + B<p'
(5.4 )

where, as usual, the undefined terms p" and q" are set to be zero.

Note that the orthogonality condition also implies that ll<p (z) = 1,
k<p=O, A<p(=2)==N~~1-e~, and

(5.5)

which agrees with _ZN~+e~ P'1'( -=) for 1=1 = 1. This yields the formulas

G<p(=) = ~~N,pp<p(z)

HIjJ(z) = _~-N~~e~P '1'( -z)

so that the decomposition sequences are given by

b -!( -1)" 'I'n-2 PNlp-n+f.:v '

n=O, ... ,N",
(5.6)

which are both finite sequences. Observe that since P<p (=) = ZN~ P", (z) for
1=1 = 1, the pair of identities in (4.13) now becomes ~ single identity

IP<p(zW + IP '1'( -=W = 1, 1=1 = 1,

often used in [9, 14].
In general, for any multiresolution analysis with (generalized) B-spline

qJ E (/J and an arbitrary wavelet 1] E 'P, let us recall the notations in (1.3) and
(1.13), namely

fn ~
l 'I k.} J} E;Z (5.7 )
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which are unconditional bases of Vk and Wk> respectively. Then from the
discussion in Section 1, it is obvious that every function Iv E V"', where
N E 7L, has a (unique) orthogonal decomposition

(5.8)

for any M> 0, where gk E Wk and IN -I,,[ E VN_M' Hence, by expressing
each of these orthogonal components in terms of the unconditional bases
(5.7), namely

(5.9)

gdx) = L d; 17k.) (X),
IEZ

it is not difficult to see that the coefficient sequences

satisfy both the decomposition relation

k-l" k
cJ = '- afl-~J en'

tiE ;Z

d k - 1 "b k; = '- n - 2j c!l'
nE:£

and the reconstruction relation

jE 7L

j E 7L

(5.10)

(5.11 )

jE 7L, (5.12)
nEll

where we have used the notation

{
P;',

P,,:= 0,

q" :=q;'.

flEE

n=O, ..., N<p

otherwise (5.13 )

Indeed, noting that for any nontrivial function ~ ELI n L 2, the assumption

L Q(j ~( • - j) = 0
jE £.

implies that r1.) = 0 for all j, and applying the orthogonality property
qJ k.) .1 17k, I for all j, / E 7L, the relation

Idx) = Ik-l (x) + gk-l (x)
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can be shown to be equivalent to (5.11) by the decomposition formula
(4.20), and equivalent to (5.12) by the pair of two-scale formulas (1.4) and
(4.1). For this reason, the two-scale sequences {p,,} and {q,,} in (5.13) are
also called reconstruction sequences. That is, we have the following
so-called pyramid algorithms (cf. [15, 9] ).

Algorithm 1 (Decomposition Algorithm). The orthogonal wavelet
decomposition (5.8) can be realized by applying the decomposition relation
(5.11) recursively, as follows:

/ / / /
Algorithm 2 (Reconstruction Algorithm). The reconstruction of f'V

from its orthogonal components in (5.8) can be realized by applying the
reconstruction relation (5.12) recursively, as follows:

c·Y - AI -----+ cN - AI + 1 -----+ ... -----+ cN - 1 -----+ cN

Remark 5.2. We have seen in Remark 5.1 that if both cP E (/> and '1 E I/'
are o.n. in the sense of (11 0

), then all the decomposition sequences {a,,},
{b,,} and reconstruction sequences {p,,}, {q,,} are finite sequences (cf. (5.6)
and (5.4)). In the general setting, by choosing '1 E I/'p' although the
reconstruction sequences {p,,} and {q,,} are both finite sequences, we note
that {a,,} cannot be finite if q> is not o.n. and {b,,} cannot be finite unless
both q> is o.n. and '1 has minimum support. The reason is that from (4.11)
and (4.12), for Gcp and H ~ to be in Te, it is necessary and sufficient that both
IIcp and w ~ are constants. Hence, to implement non-o.n. cp E (/> and '1 E 1/',
by applying the pyramid algorithms, such as the polynomial B-splines Nm

and B-wavelets 1/1 m' m ~ 2, the decomposition sequences have to be
truncated. We will establish a duality principle in the next section to
essentially interchange the pair of decomposition sequences and the pair of
reconstruction sequences, so that even for the polynomial spline setting, the
decomposition sequences can still be finite (cf. [6]). The importance of
using polynomial splines and wavelets for linear filtering, over any o.n. cp
and 1/1, such as those constructed in the celebrated paper [9], is that both
polynomial B-splines and B-wavelents have (at least generalized) linear
phases, while due to their nonsymmetric behavior (cf. [9]), o.n. q> and 1/1
do not have this important property, and thus may cause phase distortion
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of the signals (cf. [18, pp. 250-269]). When we study linear phases, we will
always assume, for notational convenience, that all the functions under
consideration are real-valued functions.

DEFINITION 5.1. A real-valued function f ELI is said to have
generalized linear phase if its Fourier transform has the representation

WE IR, (5.14a)

where a and b are real constants and A(w) is a real-valued function.

DEFINITION 5.2. A real-valued function f ELI is said to have linear
phase if its Fourier transform satisfies

WEIR, (5.14b)

for some real constant a, where the + or - sign is independent of w.

EXAMPLE 5.2. Let Nm and tjJm denote the mth order polynomial
B-spline and B-wavelet (cr. (4.9)). Then from Example 4.1 we see that

Nm(W)=ein~~;2)re-llmi2)UJ (5.l5a)

and

1 (4) rn !( )2m IA _ • W -il(2)
tjJm(W)-(2m_l)!;; sm4" Il2m _,(-e )

x ei [( -m + 1 2)0; + ((3m - 21,/2)"J. (5.15b)

Hence, both Nm and tjJ m have generalized linear phases for all m, and have
linear phases for all even m. For this reason, even-order polynomial splines
and wavelets are more useful in signal processing than the odd-order ones,
although generalized linear phases can also be handled by standard
methods (cf. [18, pp. 250-269] ).

It is well known in the signal processing literature (cf. [18, pp. 250-269])
that all symmetric or antisymmetric functions have generalized linear
phases. In fact, the converse also holds as in the following.

LEMMA 5.1. A real-valued function f(x) has generalized linear phase if
and only if it is either symmetric or antisymmetric about some X o E IR.

Remark 5.3. In view of this lemma and the nonsymmetric property
established by Daubechies [9], all o.n. (compactly supported) qJ and tjJ
(except Nt and the Haar function tjJ,), do not have generalized linear
phases.
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Proof (i) If f(x) has generalized linear phase, then there is a real­
valued function A(w) such that

/(w) e'(xow- bl =A(w), WE IR,

for some real constants X o and b. Taking the complex conjugates of both
sides, we have

Hence, since f(x) is real-valued, the inverse transform yields

f(xo+ x) = e'2b f(xo - x)

= e,2bf(xo - x) = ± f(xo - x).

Here, since f is real-valued, we must have e'2b = ± 1.

(ii) The proof of the converse is similar. I
To study the phase properties of rP E f/J and '1 E '1', we also need the

analogous notions of generalized linear phase and linear phase of a real­
valued II-sequence, as follows:

DEFINITION 5.3. Let {f,,} be a real-valued II-sequence with "symbol"

1
F(::) := - I 1,,::/1.

2 1lE l!.

(5.16 )

Then {f,,} is said to have generalized linear phase if F(w)=A(w)e'(ao'+b)
for some real-valued function A(w) and real constants a and b. It is said
to have linear phase if F( w ) = ± IF(w )I e'u<v for some real constant a, where
the + or - sign is independent of w.

Analogous to Lemma 5.1, we also have the following.

LEMMA 5.2. A real-valued II-sequence has generalized linear phase if and
only if it is either symmetric or antisymmetric with respect to some no E !Z;
that is, fn = ±f2no-n, for all n E Z.

Remark 5.4. The "symmetric" condition in Lemma 5.2 provides a
standard tool in digital filter design (cr. [18, pp. 465-488]) to achieve
generalized linear-phase filtering. That the point no of symmetry or
antisymmetry must be in !Z follows from the 2n-periodicity of F(e'W).
Otherwise, the proof of Lemma 5.2 is the same as that of Lemma 5.1.

Remark 5.5. If supp f = [c, d], then the center Xo = (c + d)/2 is the
point of symmetry or antisymmetry for a generalized linear-phase f, and
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l(w)=)'A(w)e- iXOW for some constant)' with '),2= ±l. Similarly, if Un}
is finite with suPPUn}=[k[,k 2]"Z (k[,k 2 EZ), and has generalized
linear phase, then the center of symmetry or antisymmetry of {I,} is
no = (k [+ k 2 )/2 E ~Z, and F(e"") = i'A(w) ein,)"" with 1'2 = ± I.

Characterization of (strict) linear phase is similar. Let us first study these
properties for sequences.

LEMMA 5.3. A real-valued I [-sequence {fn} has linear phase if and only
if there exists some no E Z such that the function F( e iw

) e -/flOW is real-valued,
even, and has no sign changes.

Proof By definition, lfn} has linear phase if and only if F(e"'»)e- iaW is
real-valued and does not change sign, where a is some real constant. This
constant a must be an integer no because of the 2n-periodicity of F(e"").
That F(e iW ) e-- inoo, is even follows from the assumption that {fn} is a real
sequence. I

If the sequence {I,} is finite, we can say a little more.

LEMMA 5.4. A real-valued sequence Un} with support [0, N] has linear
phase if and only if N = 2N' with N' E Z, F is a polynomial whose roots on
Izi = 1 have even orders, and F= F.

Proof The proof involves factorizing F into F = F[ F2 where F[ has all
its roots on Izi = 1 and F2 does not vanish on 1.:1 = 1, observing that
FI = F[, F2 = F2 , deg F[ and deg F2 are both even, and applying
Lemma 5.3. I

This argument also applies to infinite Un}, provided that F has an
analogous factorization. Since it will be useful for studying the phase
property of all dual bases, we formulate this result in the following remark.

Remark 5.6. Let Un} E II be real-valued such that its symbol F has the
representation F = F[ R where F[ E n with all of its zeros lying on 1=1 = 1
and R(e"") # ° for all w. Then Un} has linear phase if and only if
F( eiw )e - inow is real-valued for some no E Z and all the zeros of F[ have
even multiplicities.

We are now ready to study the phase properties of (generalized) B­
splines and B-wavelets. We note, however, that since we will also discuss
the phase properties for the dual bases in the next section, it is necessary
to include those multiresolution analysis generators without compact
supports. As before, let us restrict our attention to a fixed multiresolution
analysis generated by an r/J E C/J. Let if> denote the collection of all r/J where
each r/J generates the same multiresolution analysis such that ~(O) = 1,
{r/J( . - n): n E Z} is an unconditional basis of Vo, and r/J satisfies a two-scale
formula whose defining sequence {pr,} is in 11 but may not be finite. We
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will again denote its "symbol" by P,p (recalling that a factor of ! is used).
Note that cP::::> CP. In studying the phase properties, we will assume, for
convenience, that all the two-scale sequences {p~} and {q~} are
real-valued.

Remark 5.7. Under the assumption that {p~} E I [ is real-valued and
the condition that J(O) = 1, where ,p E cP, it is clear that if,p has generalized
linear phase, then we may write J( OJ) = A,p (OJ) eia", with real-valued
function A¢ and real constant a. That is, the shift by b in Definition 5.1
necessarily disappears.

We have the following result.

THEOREM 5.1. Let ,p E cP be defined by a real-valued I [ Two-scale
sequence with symbol P.p. Then

(i) ,p has generalized linear phase if and only if P¢ (e iw )= A (OJ) ei1low

where A(OJ) is real-valued and no E !£'; and

(ii) ,p has linear phase if and only if

Proof By Lemma 5.2 and Remark 5.7, we note that for {p~} to have
generalized linear phase, the two-scale formula yields, for z = e -iw2,

P (_) _ J(OJ) _ e
i2aw

J( -OJ) _ iaw P (_)
¢,--, -, -e .p"",

,p(OJ/2) elaW,p( - OJ/2)

so that P¢(eiw)eiaw=:A(OJ) is real-valued. Here, by the 2rr-periodicity of
P,p(eiw ), we have -a=:noE!£'. For the linear-phase setting, we even have
no E £' by Lemma 5.3 and, with:: = e - iw 2, it follows that

e --i1l0wJ(OJ)
P (z)z"o=P (::)z"o= , ~O,

4> 4> e - i(1IO'2)<",p( OJ/2)

since for linear-phase ,p, both the numerator and the denominator are
non-negative.

To verify the converse, we rely on the infinite product formulation of J
with J(O)= 1, namely, if P4>(e iW )e- i1l1l'''=A(OJ) is real, then

x

J(OJ) = f1 P¢(e- 1w2')
j~l

x
= f1 [P¢(e iw .2/) e-i2110w.2'J

10= I

.., "".
=e- 1

•
1IOW ,p( -w)

which is equivalent to ,p(no+ x) = ,p(no<1:). I
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If ¢J E f/> so that {pf.} is a (real-valued) finite sequence, then with the aid
of Lemma 5.4, the above argument also gives the following result.

THEOREM 5.2. Let ¢J E f/> be defined by a real-valued (finite) two-scale
sequence. Then

(i) ¢J has generalized linear phase if and only if P", = P",; and

(ii) ¢J has linear phase if and only if P", = P '" and all the zeros of P '"
on the unit circle, (f any, have even multiplicities.

Recall that for qJ E f/>, the corresponding (minimally supported)
B-wavelet t/J E 'Pp satisfies the two-scale formula (4.1) with polynomial
"symbol"

where Jiq> is defined in (4.3) (here, also recall the factor Aq>(Z2) of f3q> in
(4.2) and (4.3)). We have the following result on the phase property of
B-wavelets.

THEOREM 5.3. Let qJ E f/> be defined by a real-valued (finite) tll'o-scale
sequence {P;.}. Then

(i) if {P;'} has generalized linear phase, the wavelet t/J also has
generalized linear phase; and

(ii) if {P;'} has linear phase, the wavelet t/J also has linear phase.

Proof In proving this theorem, we must also show that the two-scaled
sequence {q~} for t/J is also real-valued. The key idea in this proof is that
since Aq> is zero-free on Iz I= 1 by Remark 4.3, and since (II 'I' Pq> ) v = IIq> Pq>
provided Pq>=Pq>, we have Aq>(Z~)=O if and only if A",(z0 2)=0 for zo#O,
and Ji", (zo) = 0 if and only if Ji",(z(~ 1) = 0 for ':0 # O. This yields, using the
normalization Z2 , Ji", (':),

(recall the definition of c'" in Corollary 4.3). So, if {p':;} has generalized
linear phase (or linear phase), {qn is real and also has generalized linear
phase (or linear phase). Hence, we can apply Theorem 5.2 to complete the
proof of this theorem. I

6. DUAL BASES AND A DUALITY PRINCIPLE

For qJ E f/> and any 1] E 'Pp , both of the two-scale (or reconstruction)
sequences in (5.13) are finite. However, unless qJ and 1] = t/J are both o.n. in
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the sense of (11 0
). the two decomposition sequences must be infinite,

although they are of exponential decay. For strictly (generalized) linear­
phase considerations, however, o.n. <p and l/J (different from the first order
B-spline N I and Haar function l/J I) cannot be used, and it seems that the
only way out is either to truncate the decomposition sequences or to go to
non-orthogonal wavelet decomposition. We will only briefly discuss the
second option considered recently in [8, 11] by introducing the so-called
"biorthogonal wavelets" later in this section. Our approach in this section
is to "interchange" the finite reconstruction sequences with the decomposi­
tion sequences. This idea, initiated in [6] for the polynomial spline and
wavelet setting, is valid in general due to the symmetry of the "two-scale
polynomials," Ptp and Q~, and the "reconstruction polynomials," Gtp and
H", in the identities (4.13). The technique is to consider the duals of <p and
I] defined as follows.

DEFINITION 6.1. iP E;P is said to be dual to qJ (or equivalently
{iP( . - n): n E £'} is dual to {!PC - n): n E £'} ) if

<iP(· -m), <p(. -n» =r iP(x- m) <p(x-m) dx = c5",.n'
-·x

The same formulation applies to defining the dual ~ E 'Pp of 1].

Remark 6.1. Since {<p(.-n):nEZ} is an unconditional basis of Va,
the dual iP in Va of qJ is unique. Similarly, any I] E 'Pp has a unique dual
~ E 'Pp •

We have the following result.

THEOREM 6.1. The Fourier transforms tP and ~ of the duals iP E c[J and
~ E 'Pp of qJ and 1], respectivezr, satish' the tll'o-scale formulas

, -, (OJ)iP(OJ)=Gtp(z)iP "2 '

~(OJ) = H~(;:) ~ (~).

z = e -iw:'2,

==e-- iw2
•

(6.1 )

(6.2)

Remark 6.2. There is a more direct way to express iP in terms of qJ, and
~ in terms of 1]. In fact, we have the identities

,c ep(OJ)
qJ(OJ)=" '( 2 )12'

L..flEl' IqJ OJ + rrn

,c( ) _ ~(OJ)

I] OJ - LflEl' I~(OJ + 2rrnW'

(6.3 )

(6.4 )
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where the denominators are strictly positive since we have unconditional
bases (cf. Remark 2.3). To verify (6.3) and (6.4), we simply note that for
any n E 71.

r,_ <p(x) ip(x - n) dx = 2
1
n f>':, cP(w) <p(w) elf"o dw

1 j' >': • ( ) cp(W) lIlUJ -J=- <p w e uW
2n ~:r LnE]' IcP(w + 2nnW

\ x .2rrlk+ 1\ IcP(W)\2 _
=- L I elllUJdw

2n k= _>': '2"k LnEJ,lcP(w+2nnW

I 2"
=-f eim'Jdw=b2n 0 n.O·

We now turn to the proof of Theorem 6.1.

Proof (i) To prove (6.1), we apply (6.3) in the above remark, and
(2.3), (70), and (4.11) to obtain

.: cP(w) P'I'(z). (W)
<p(w) = Brp(::2) = Bcp{Z2) <p '2

P'I'{z) ':(W)
= Bcp(Z2)B'I'{zJ<p '2

z~~P'l'(::) k-.: (W)= ~:: ~Jl'l'(z) <p -
::2k~ [J 'I' (=~) 2

=G'I'{z) <p (~).

where::: = e -- iUJ-2.

(ii) To verify (6.2), we take advantage of the uniqueness of ~ and
directly compute, for all n E 'l., the inner product

I n := r" '1{x)~(x-n)dx
-x

=2~rx [Q~{Z)cP(~)J[H{Z)<p(~)JeinUJdw

= 2
1
nr" {I - P'I' (z JG{z)) cP ( ~) <P ( ~) e

lllUJ
dw,
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where z = e - iw/2 and the first identity in (4.13) has been used. Hence,
applying (6.1) and duality of ip and cp, we have

I" =..!. r: 2q)(w) $(w) ei2"w dw _..!.r q)(w) $(w) einw dw
2n - Yo 2n - x

= 215".0 - 15".0 = 6".0'

This completes the proof of the theorem. I
Remark 6.3. Recalling the Laurent expansions of G and H in (5.1), we

observe that the two-scale formulas (6.1) and (6.2) are equivalent to

and

ip(x)= L 2a,,<p(2x-nj
/lEE

(6.5)

(6.6)

Hence, with the exception of complex conjugation and a factor of 2,
the decomposition sequences {an} and {bn } are used as the two-scale
sequences for the duals ip and ~. So, in view of the identities in (4.13), the
decomposition sequences for the duals must be {! p;'} and Oq~}; that is,
we have

(6.7)

IE Z, where both summations are finite.

Hence, we have derived the following.

COROLLARY 6.1 (Duality Principle). Let cp E ep and Y/ E 'l'p, and let ip E?>

and ~ E 'l'p be their corresponding duals. If the two-scale (or reconstruction)
and decomposition sequences of (q>,I1) are given by ({P;.}, {q~}), and
({an}, {b,,} j, respectively, then the two-scale (or reconstruction) and
decomposition sequences of (ip, ~) are given by ({ 2a,,}, {2E,,}) and (0 P;'},
{~q~}), respectively.

Remark 6.4. If cp is not o.n. in the sense of (11 0
), then ip necessarily has

infinite support. Similarly, ~ has infinite support if Y/ is not o.n. Nonethe­
less, both ip and ~ are of exponential decay, and certainly ~ provides a
very good wavelet window function for the integral wavelet transform
(cr. [10, 13]). The duality of ~ and 11 now yields a recovery formula of any
f E [l from its interal wavelet transforms <f, ~k.,), namely

fIx) = L 2k <f, ~k. ,) 11k. I (x),
k./EIL

(6.8)
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where since each YJk,j has compact support, the summation over jEll in
(6.8) is only a finite sum for any fixed x E R. We call (6.8) the complete
wavelet decomposition of.f Of course, if an approximation of f from V" is
already made, say by Iv E VN , then we have the following wavelet
decomposition of Iv as formulated in (5.8), namely

.\1 _ 1

Iv(x)= L

(6.10)

k = .'\' - At I E :£

+ L 2N- M <Iv, ijJN-M,) lfJN -M.i (x), (6.9)
lEE

where for each x E IR, all the three sums are finite.

The wavelet decompositions (6.8) and (6.9) can be used to build linear
filters. Hence, it is very desirable to have the property of linear phase, or
at least generalized linear phase, for the dual bases ijJ and ii. We have the
following result.

THEOREM 6.2. Let lfJ E (/J and t/J E Pp be both minimally supported such
that the defining two-scale sequence {p;,} of lfJ is real-valued. Then

(i) if {p;,} has generalized linear phase, both the duals ijJ and ~ also
have generalized linear phases; and

(ii) if {p;,} has linear phase, both the duals ijJ and ~ have linear
phases.

Proof We first prove this theorem for ijJ. By Lemmas 5.2-5.4, since
z-k~ITcp(Z»O on Izi = 1, the sequence {2ti,,} with symbol Gcp(z) defined in
(4.11), which is the two-scale sequence of ijJ, has generalized linear phase
(or linear phase), provided that {p;,} has this property. Hence, it follows
from Remark 5.6 and Theorems 5.1 and 5.2, that if {p;,} is of generalized
linear phase, so is ijJ; and if {p;,} is of linear phase, so is ijJ.

To investigate the phase property of ~, we note from Theorem 6.1 that
its two-scale sequence is given by {2b,,} whose symbol is H", (z ), where

H (z)= _Z-2N~+2k~+1Pcp(-zIAcp(z2)
'" ITcp (Z2)

(cr. (4.12) with 11'", = 1). Assume that {p;,} has linear phase. Then since the
polynomial Acp is zero-free on Izi = 1 (cf. Remark 4.3), following the proof
of Theorem 5.3, we see that

1:::1 = 1.
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(6.11 )

Next, recall that N", =: 2N~ is even (cf. Lemma 5.4) and P", (e iw
) =

± IP",(eiW)1 eiN~ (cf. Remark 5.5). Hence, P",( _eiW ) = ± IP",( _eiW)1 x
eiN~u eiN~" where eiN~" = ± 1, so that {( - 1rp~} also has linear phase.
Combining these two observations and the fact that :: - 2k~Il", (::2) > 0 for
1::1 = 1, we may conclude from (6.10) that {2bn }, and hence {2bn }, also has
linear phases. So, by Theorem 5.3, ~ has linear phase. The proof for the
generalized linear phase of ~ is similar. I

Remark 6.5. In order to achieve the generalized linear phase property
while maintaining the compact supports, Cohen [8] (cf. also, [II])
introduced the notion of biorthogonal bases. While there seems to be
certain similarities between the dual bases in this paper and the biorthogonal
bases in [8], they are really quite different. Let us briefly discuss what
biorthogonal bases are meant to be. Let ¢J E cP, set

1
hn == --;== p~,

~/2

and choose a finite sequence {hI!} that satisfies the following two
conditions:

/lEJ!.

x

(ii) fl mo(2- iw)
i~ 1

converges uniformly on all compact subsets of IR, where

(6.12 )

(6.13)

Let ~cEL2 whose Fourier transform ~,(w) is defined by the infinite
product (6.12). Then it was proved in [8] that ~c has compact support and
is a "dual" of ¢J in the sense

<r/J(. -m), ~«(. -n) = bm .n , m,nEZ. (6.14 )

We note, however, that although the "duality" condition (6.14) is the same
as ours, this "dual" ~c is not in Vo, in general. With both sequences {h n }

and {h n } already determined, the "wavelet" !/J, and its "dual" ~c are now
defined by

64071 3-5

!/J,(X)=y0. L (-I)"L n + 1r/J(2x-n)
nET-

(6.15 )
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flE"£

(6.16 )

(6.17 )

Let us pause for a moment to remark that this approach is also different
from ours in that we determine the duals iP and ~ from cp and t/J, while
Cohen determines t/J c and ~ < from <p and ~c' The "wavelet" t/J c and its dual
~ c of Cohen's also satisfy the same "duality" properties as ours, namely

- -k-<t/J c;k.J' IjJ c/,m) = 2 bu ()"m
- -k-

<ljJk,J,IjJ',m)=2 bk,l()"""

where we have used the same dilation and translation definition as (1.13)
for both IjJ c and ~ C' However, again the similarity ends here. Indeed, if W~
and W~ denote, as usual, the closures of the linear spans of {1jJd, i: j E 7L }
and {~c:k./ j E 7L}, respectively, then not only are W~, W~ different, they
are also different from our orthogonal wavelet spaces Wk' It is interesting
to point out, however, that each of {W~} and {W~}, k E 7L, provides a
direct-sum decomposition of e, which is non-orthogonal, in ger-eral. For
more details, see [8, 11].

7. FINAL REMARKS

In this paper, the multiresolution analysis generator <p E t/J is defined by
its two-scale formula (1.4), or equivalently, its Fourier transform is defined
by

ere

J(w) = n P.p(e- iIP
"2

1
)).

i= I

(7.1 )

Hence, the existence of a nontrivial solution of (1.4) is equivalent to the
convergence of the infinite product in (7.1). This problem has been
thoroughly investigated in [9, 12, 16,2]. In particular, Daubechies [9]
proved that if

(
1+ 7)'"P.p(Z)= T M(z), m~ 1, (7.2 )

where ME 1! satisfies M( 1) = 1 and

sup IM(e- i1w:2») •.• M(e-«w/21
»)1 < 3'lm-11

WElP.

(7.3 )

for some positive integer I, then the infinite product (7.1) converges.
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Another useful condition for the existence of a nontrivial solution to (1.4)
IS

inf IP,p (ei"')1 >0; and
Iwl <(1)/2

(7.4 )

given by Meyer [16].
The importance of the (generalized) B-spline <p E if> is that it provides the

information on the order of approximation from the multiresolution
analysis spaces {Vk } and allows us to construct approximation and
interpolation formulas that guarantee this order of approximation
(cf. [19.21,3]). On the other hand. the importance of the B-wavelet is its
orthogonal property which enables us to analyse the best approximants. In
the following. we give a summary of the equivalence of some of these
properties.

THEOREM 7.1. Let <p E if> be the (generalized) B-sp/ine that generates a
given multiresolution analysis. and let 11 E lJ'p be arbitrarily chosen. Then the
following statements are equivalent:

(i) The order of approximation of <p is m. in the sense that

inf Ilf_ gil = 0 ((~)m)
gE v. 2

for all fE em n L 2
•

(ii) Dj~(2rrl)=0. IEZ\{O}, j=O• ..., m-1.

(iii) The commutator order of <p is m in the sense that

[g I <p] := L g(j) <p( . - j) - L <p(j) g( . - j)
JE Z

is identically zero for all polynomials g of degree ~m - 1.

(iv) P",(z) = ((1 + z)j2)m M(z) for some ME rr with M(1) = 1.

(v) L:.:::'o (-1 rnjp~= o. j= O , m-1.

(vi) f':':xo xJ'l(x) dx =O. j= 0, m - 1.

For a proof of this result. see a combination of [19,21. 12,3,20].
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